ai/studio

Quantum Minds Table Operators

Introduction

Table operators in Quantum Minds provide powerful capabilities for manipulating, analyzing, and visualizing tabular data. These operators enable you to transform raw data into actionable insights through summarization, visualization, and advanced analysis.

Available Table Operators

Operator Description Common Use Cases
TableToTextSummary Generates text summaries from tabular data Data reports, insights generation, executive summaries
TableToGraph Creates visual chart representations Data visualization, trend analysis, pattern identification
TableToGraphV2 Enhanced visualization with improved formatting Advanced charts, custom visualizations
TableToGraphV3 Advanced visualization with interactive elements Interactive dashboards, complex data stories
PandasAi AI-powered dataframe analysis Data exploration, pattern discovery, quick insights
PandasAiDf Dataframe-to-dataframe transformations Data preparation, feature engineering, transformation
SyntheticTableGenerator Creates synthetic tabular data Testing, demos, data augmentation
TableMerge Combines multiple tables Data integration, relationship analysis
TableDeduplicate Removes duplicate entries Data cleaning, entity resolution
TableFilter Filters rows based on conditions Data subsetting, focused analysis
TableGroupBy Groups and aggregates data Summary statistics, dimensional analysis
TableValidate Validates data against rules Data quality, compliance checking
TableSort Sorts table data Ranking, ordered analysis
TableDateFormat Standardizes date formats Data normalization, time-based analysis
TableHash Creates hashes from data Anonymization, identity protection
TableRowProcessor Processes individual rows with LLMs Record enrichment, classification, entity extraction
TableMerger Alternative implementation for combining tables Complex data integration, multi-source analysis
MDToTable Converts markdown tables to dataframes Document data extraction, structural parsing
TextToGraph Generates graphs from text descriptions Quick visualizations, concept illustrations

TableToTextSummary

The TableToTextSummary operator analyzes tabular data and generates natural language summaries highlighting key insights.

Inputs

Parameter Type Required Description
prompt string Yes Instructions for the type of summary needed
dataframe object Yes Tabular data to summarize
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format (markdown)
content string Text summary with insights

Example Usage

Prompt: "Summarize the key trends in monthly sales by product category"
Dataframe: [Sales data with product categories and monthly figures]

Output:
"Analysis of monthly sales by product category reveals several key trends:

1. Electronics showed the strongest overall performance with 18% YoY growth
2. Apparel experienced seasonal fluctuations with peaks in December and July
3. Home goods demonstrated consistent growth throughout Q3
4. Beauty products declined gradually until September before rebounding in Q4

The most significant correlation appears between electronics and home goods sales, suggesting complementary purchasing patterns."

Best Practices

TableToGraph Series (V1, V2, V3)

The TableToGraph operators convert tabular data into visual representations through various chart types.

Inputs

Parameter Type Required Description
prompt string Yes Instructions for visualization type and focus
dataframe string Yes Data to visualize
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format (recharts)
content lgraph Visualization data structure

Versions Comparison

Feature TableToGraph TableToGraphV2 TableToGraphV3
Chart types Basic (bar, line, pie) Extended (scatter, area, radar) Comprehensive (heat maps, treemaps, network)
Customization Limited Moderate Extensive
Interactivity Static Basic tooltips Full interactive elements
Multi-series Basic support Enhanced support Advanced multi-dimensional
Annotations None Basic Rich annotations
Responsive Limited Improved Fully responsive

Example Usage

Prompt: "Create a stacked bar chart showing quarterly revenue by product category, with a trend line showing overall growth"
Dataframe: [Quarterly sales data by product category]

Output: [Interactive visualization with stacked bars and trend line]

Best Practices

PandasAi and PandasAiDf

These operators leverage AI to analyze and transform dataframes with Pandas-like operations.

PandasAi

Generates Python code for data analysis and returns both analysis and transformed data.

Inputs

Parameter Type Required Description
prompt string Yes Instructions for data analysis
dataframe string Yes Data to analyze
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format (markdown)
content string Analysis results and explanations

PandasAiDf

Focuses on dataframe-to-dataframe transformations for data preparation workflows.

Inputs

Parameter Type Required Description
prompt string Yes Instructions for data transformation
dataframe string No Primary data to transform
dataset string No Alternative data source
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format (markdown)
content string Transformed dataframe

Example Usage

# PandasAi
Prompt: "Analyze the relationship between customer age and purchase amount, identify any correlations and outliers"
Dataframe: [Customer purchase data]

Output: 
- Statistical analysis of age vs. purchase relationship
- Correlation coefficients
- Outlier identification
- Visualizations of the relationship
- Insights and recommendations

# PandasAiDf
Prompt: "Create a pivot table showing average purchase amount by age group (18-25, 26-35, 36-45, 46+) and product category"
Dataframe: [Customer purchase data]

Output: Transformed dataframe with the pivot table structure

Best Practices

SyntheticTableGenerator

Creates synthetic tabular data based on specifications, useful for testing and demonstrations.

Inputs

Parameter Type Required Description
prompt string Yes Description of the table structure and data characteristics
rows string Yes Number of rows to generate
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format
content markdown Generated synthetic data

Example Usage

Prompt: "Generate synthetic sales data with columns for customer_id, purchase_date, product_category (Electronics, Apparel, Home, Beauty), quantity, and price. Include seasonal patterns with higher sales in December."
Rows: "100"

Output: Synthetic dataset matching the specifications with realistic patterns

Best Practices

Data Cleaning Operators

Several Table operators focus on data cleaning operations:

TableDeduplicate

Removes duplicate entries from tables based on specified columns.

Inputs

Parameter Type Required Description
dataframe string Yes Data to deduplicate
columns string Yes Columns to use for identifying duplicates

Outputs

Parameter Type Description
type string Output format (markdown)
content string Deduplicated dataframe

TableFilter

Filters rows in a table based on specified conditions.

Inputs

Parameter Type Required Description
dataframe string Yes Data to filter
condition string Yes Filter condition (e.g., "age > 30 and region == 'North'")

Outputs

Parameter Type Description
type string Output format (markdown)
content string Filtered dataframe

TableGroupBy

Groups table data and performs aggregations.

Inputs

Parameter Type Required Description
dataframe string Yes Data to group
groupby string Yes Columns to group by
aggregations string Yes Aggregation operations (e.g., "mean", "sum", "count")

Outputs

Parameter Type Description
type string Output format (markdown)
content string Grouped and aggregated dataframe

TableValidate

Validates table data against specified rules.

Inputs

Parameter Type Required Description
dataframe string Yes Data to validate
not_null_columns string No Columns that should not contain null values
regex_columns string No Columns to validate with regex patterns
regex_pattern string No Regex patterns for validation

Outputs

Parameter Type Description
type string Output format (markdown)
content string Validation results

TableSort

Sorts table data based on specified columns.

Inputs

Parameter Type Required Description
dataframe string Yes Data to sort
columns string Yes Columns to sort by
ascending boolean Yes Sort direction (true for ascending, false for descending)

Outputs

Parameter Type Description
type string Output format (markdown)
content string Sorted dataframe

TableDateFormat

Standardizes date formats in a table.

Inputs

Parameter Type Required Description
dataframe string Yes Data containing dates
column string Yes Column containing dates to format
output_format string Yes Target date format
custom_format string No Custom format string if needed
timezone string No Timezone for conversion

Outputs

Parameter Type Description
type string Output format (markdown)
content string Dataframe with standardized dates

TableHash

Creates hash values from table content, useful for anonymization.

Inputs

Parameter Type Required Description
dataframe string Yes Data to hash
columns string Yes Columns to apply hashing to
algorithm string Yes Hashing algorithm (e.g., "md5", "sha256")

Outputs

Parameter Type Description
type string Output format (markdown)
content string Dataframe with hashed values

Advanced Table Operations

TableRowProcessor

Processes individual rows from a dataframe using LLMs for enrichment or transformation.

Inputs

Parameter Type Required Description
prompt string Yes Instructions for row processing
dataframe string Yes Data containing rows to process
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format (markdown)
content string Processed data

Example Usage

Prompt: "For each customer record, analyze the purchase history and generate a personalized product recommendation with reasoning"
Dataframe: [Customer purchase history data]

Output: Customer data enriched with personalized recommendations and reasoning

TableMerger / TableMerge

Both operators combine multiple tables but with different implementations and capabilities.

Inputs

Parameter Type Required Description
dataframe string Yes Primary dataframe
other_dataframe string Yes Secondary dataframe to merge with
how string Yes Join type (inner, outer, left, right)
on string Yes Join key(s)
concat string Yes Whether to use concatenation instead of join
axis string Yes Axis for concatenation (0 for rows, 1 for columns)

Outputs

Parameter Type Description
type string Output format
content string Merged dataframe

MDToTable

Converts markdown tables to structured dataframes.

Inputs

Parameter Type Required Description
markdown string Yes Markdown text containing tables
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format (markdown)
content string Structured dataframe

Example Usage

Markdown: "
| Name | Age | City |
|------|-----|------|
| John | 32  | New York |
| Alice | 28 | Boston |
| Bob | 45 | Chicago |
"

Output: Structured dataframe with proper columns and data types

TextToGraph

Creates graphs directly from text descriptions without requiring a dataframe.

Inputs

Parameter Type Required Description
prompt string Yes Description of the graph to create
trigger string No Optional control signal

Outputs

Parameter Type Description
type string Output format (lgraph)
content string Graph visualization

Example Usage

Prompt: "Create a pie chart showing market share distribution: Google 35%, Apple 25%, Microsoft 20%, Amazon 15%, Others 5%"

Output: Pie chart visualization based on the described data

Common Table Operation Patterns

Data Cleaning Pipeline

SQLExecution → TableDeduplicate → TableFilter → TableDateFormat → PandasAiDf

Analysis and Visualization

PandasAi → [TableToTextSummary, TableToGraphV3]

Data Transformation

ExcelToTable → TableRowProcessor → TableGroupBy → TableSort → CreateDataset

Report Generation

PandasAiDf → TableToTextSummary → TextToGraph → CardGenerator

Best Practices for Table Operators

Data Quality Considerations

Performance Optimization

Effective Visualization

Creating Reusable Patterns

Integration with Other Operator Categories

Combining with SQL Operators

Create complete data pipelines from database to analysis:

TextToSQL → SQLExecution → TableDeduplicate → PandasAi → TableToGraph

Combining with Document Operators

Extract and process tabular data from documents:

RAGSummarize → MDToTable → TableToTextSummary → CardGenerator

Combining with Flow Operators

Create conditional data processing workflows:

TableValidate → Flow.Condition → [TableFilter, TableTransform] → TableToGraph

Combining with Code Operators

Implement custom logic for complex data manipulation:

PandasAiDf → Code.Python.Execute → TableToGraph → CardGenerator

Real-World Examples

Customer Segmentation Analysis

// Extract customer data
{
  "operator": "TextToSQL",
  "input": {
    "prompt": "Get all customer transactions with demographic information for the past year",
    "dataset": "customer_database",
    "trigger": "data_extraction"
  }
}

↓

{
  "operator": "SQLExecution",
  "input": {
    "sql": "$TextToSQL_001.output.content",
    "dataset": "customer_database",
    "trigger": "query_execution"
  }
}

↓

// Clean and prepare data
{
  "operator": "TableFilter",
  "input": {
    "dataframe": "$SQLExecution_001.output.content",
    "condition": "transaction_amount > 0 and customer_id is not null",
    "trigger": "data_filtering"
  }
}

↓

{
  "operator": "PandasAiDf",
  "input": {
    "prompt": "Segment customers based on purchase frequency, recency, and monetary value (RFM analysis)",
    "dataframe": "$TableFilter_001.output.content",
    "trigger": "customer_segmentation"
  }
}

↓

// Analyze and visualize segments
{
  "operator": "TableToGraph",
  "input": {
    "prompt": "Create a scatter plot of customer segments showing monetary value vs frequency, with color representing recency and bubble size representing customer count",
    "dataframe": "$PandasAiDf_001.output.content",
    "trigger": "visualization_creation"
  }
}

↓

{
  "operator": "TableToTextSummary",
  "input": {
    "prompt": "Provide a detailed analysis of each customer segment including key characteristics, purchase patterns, and recommendations for targeted marketing",
    "dataframe": "$PandasAiDf_001.output.content",
    "trigger": "segment_analysis"
  }
}

Sales Forecasting Dashboard

// Get historical sales data
{
  "operator": "TextToSQL",
  "input": {
    "prompt": "Get monthly sales by product category for the past 3 years",
    "dataset": "sales_database",
    "trigger": "historical_data"
  }
}

↓

{
  "operator": "SQLExecution",
  "input": {
    "sql": "$TextToSQL_001.output.content",
    "dataset": "sales_database",
    "trigger": "data_retrieval"
  }
}

↓

// Prepare data for forecasting
{
  "operator": "TableDateFormat",
  "input": {
    "dataframe": "$SQLExecution_001.output.content",
    "column": "sales_month",
    "output_format": "yyyy-MM-dd",
    "trigger": "date_standardization"
  }
}

↓

// Forecast future sales
{
  "operator": "PandasAi",
  "input": {
    "prompt": "Forecast sales for each product category for the next 6 months using time series forecasting. Account for seasonality and trends. Include prediction intervals.",
    "dataframe": "$TableDateFormat_001.output.content",
    "trigger": "forecasting"
  }
}

↓

// Create forecast visualization
{
  "operator": "TableToGraphV3",
  "input": {
    "prompt": "Create a line chart showing historical sales and forecasted sales by category. Include prediction intervals as shaded areas. Use different colors for each category. Add a vertical line to separate historical from forecast data.",
    "dataframe": "$PandasAi_001.output.content",
    "trigger": "visualization"
  }
}

↓

// Generate insights summary
{
  "operator": "TableToTextSummary",
  "input": {
    "prompt": "Analyze the sales forecast and provide key insights, growth opportunities, and potential risks. Highlight categories with the strongest growth potential and those requiring attention.",
    "dataframe": "$PandasAi_001.output.content",
    "trigger": "insight_generation"
  }
}

Next Steps

Explore how Table Operators can be combined with Document Operators for comprehensive data analysis that includes unstructured content.


Overview | Operator Categories | SQL Operators | Document Operators